
Haskell Language Server

Zubin Duggal

1

HLS Architecture

• hie-bios to set up GHC session to interact with build tools
• the GHC API to be able to load and analyse code
• hiedb to manage persistent information across restarts
• lsp library to handle speaking the protocol and communicate with editors
• HLS graph based build system like infrastructure to compute results and manage state
• Facilities for responding to user requests quickly and in the face of failures
• Extensible plugin architecture

2

Figure 1: HLS Architecture

3

Writing a Plugin

data PluginDescriptor (ideState :: *) = PluginDescriptor
{ pluginId :: !PluginId
, pluginPriority :: Natural
, pluginRules :: !(Rules ())
, pluginCommands :: ![PluginCommand ideState]
, pluginHandlers :: PluginHandlers ideState
, pluginConfigDescriptor :: ConfigDescriptor
, pluginNotificationHandlers :: PluginNotificationHandlers ideState
, pluginModifyDynflags :: DynFlagsModifications
, pluginCli :: Maybe (ParserInfo (IdeCommand ideState))
, pluginFileType :: [T.Text]
}

4

Hooking into LSP

• Usually, a plugin will wait for a notification or request to arrive from the editor before being
triggered.

• A request has a response and can be cancelled
• Plugin code has to be exception-safe and shouldn’t (uninterruptibly) block
• Responses for requests handled by multiple plugins are combined

• A notification is the client updating us about the state of the world
• A notification handler cannot be cancelled
• Plugin notification handlers are called in order of pluginPriority

• Both the server and the client have their own requests and notifications methods that they
can invoke/handle

5

Communicating with the editor

type PluginMethodHandler a m =
a -> PluginId -> MessageParams m

-> LspM Config (Either ResponseError (ResponseResult m))
mkPluginHandler ::

PluginRequestMethod m
=> SClientMethod m -> PluginMethodHandler ideState m
-> PluginHandlers ideState

type PluginNotificationMethodHandler a m
= a -> VFS -> PluginId -> MessageParams m -> LspM Config ()

mkPluginNotificationHandler ::
PluginNotificationMethod m

=> SClientMethod m -> PluginNotificationMethodHandler ideState m
-> PluginNotificationHandlers ideState

These are Monoids and can be combined using semigroup operations

6

Sending requests and notifications to the client

sendRequest :: MonadLsp config f
=> SServerMethod (m :: Method FromServer Request)
-> MessageParams m
-> (Either ResponseError (ResponseResult m) -> f ())
-> f (LspId m)

sendNotification :: MonadLsp config f
=> SServerMethod (m :: Method FromServer Notification)
-> MessageParams m -> f ()

7

An IDE as a build system

• We need to manage a lot of inter-dependent state
• Changes invalidate some of the state but not others
• State updates are often interrupted by new changes
• Solution: Use a build system like architecture (inspired by Shake) and get incremental

rebuilds and early cutoff
• On any change (LSP notification), we update the state, cancel any in-progress builds, and

kick off a new build
• Why not use Shake?

• We did! But we changed to a custom re-implementation more suited for our purposes
• Unlike Shake, we perform most of the building entirely in-memory
• We also have guarantees to be notified of any changes to the world, so instead of

pessimistically checking everything for freshness, we can start rebuilding only the things that
we know have changed, and proceed by rebuilding only reverse-dependencies.

8

The build system in action

data TypeCheck = TypeCheck
type instance RuleResult TypeCheck = TcModuleResult
typeCheckRule :: Recorder (WithPriority Log) -> Rules ()
typeCheckRule recorder = define (...) $ \TypeCheck file -> do

pm <- use_ GetParsedModule file
hsc <- hscEnv <$> use_ GhcSessionDeps file
addUsageDependencies $ typecheckModule hsc pm

where addUsageDependencies a = do
r@(_, mtc) <- a
forM_ mtc $ \tc -> do

used_files <-
liftIO $ readIORef $ tcg_dependent_files $ tmrTypechecked tc

void $ uses_ GetModificationTime
(map toNormalizedFilePath' used_files)

return r

9

Calling into the build system

runAction :: String -> IdeState -> Action a -> IO a
use :: IdeRule k v => k -> NormalizedFilePath

-> Action (Maybe v)
useWithStale :: IdeRule k v => k -> NormalizedFilePath

-> Action (Maybe (v, PositionMapping))

runIdeAction :: String -> ShakeExtras -> IdeAction a -> IO a
useWithStaleFast :: IdeRule k v => k -> NormalizedFilePath

-> IdeAction (Maybe (v, PositionMapping))

10

use and uses

use :: IdeRule k v
=> k -> NormalizedFilePath -> Action (Maybe v)

use_ :: IdeRule k v
=> k -> NormalizedFilePath -> Action v

uses :: (Traversable f, IdeRule k v)
=> k -> f NormalizedFilePath -> Action (f (Maybe v))

uses_ :: (Traversable f, IdeRule k v)
=> k -> f NormalizedFilePath -> Action (f v)

• Use these when you need to guarantee results are up to date
• They block until a fresh result is computed
• It is best to limit these to the body of rule definitions, and for responses where correctness

is critical, like edits and refactorings.
• Multiple use calls in an Action will access a consistent view of the state.

11

useWithStale and PositionMappings

useWithStale :: IdeRule k v => k -> NormalizedFilePath
-> Action (Maybe (v, PositionMapping))

useWithStale_, usesWithStale, usesWithStale_ :: ...
fromCurrentPosition :: PositionMapping -> Position -> Maybe Position
toCurrentPosition :: PositionMapping -> Position -> Maybe Position

• These will also block until a fresh result is computed
• But if the rule fails, they will return an old result for the rule, if one was previously

computed.
• They also return a PositionMapping specifying how to map between positions in the old

version of the document (for which the rule succeeded) and the current version of the
document (for which the rule failed)

• Use these for responding to user requests even in the face of failure

12

useWithStaleFast and IdeActions

• This function (almost) never blocks, and is meant to give you the most recently computed
version of the results.

• Queues up a refresh for the rule which will be evaluated asynchronously
• Use this for quickly responding to user requests when correctness/freshness of results is not

critical
• Examples: Hover, go to definition etc.
• Multiple calls to useWithStaleFast in sequence might result in an inconsistent view of the

state.

13

Defining your own Rules

type IdeResult v = ([FileDiagnostic], Maybe v)
data RuleBody k

= Rule (k -> NormalizedFilePath -> Action (Maybe BS.ByteString, IdeResult v))
| RuleNoDiagnostics (k -> NormalizedFilePath -> Action (Maybe BS.ByteString, Maybe v))
| RuleWithCustomNewnessCheck

{ newnessCheck :: BS.ByteString -> BS.ByteString -> Bool
, build :: k -> NormalizedFilePath -> Action (Maybe BS.ByteString, Maybe v)
}

| RuleWithOldValue (k -> NormalizedFilePath -> Value v
-> Action (Maybe BS.ByteString, IdeResult v))

defineEarlyCutoff
:: IdeRule k v
=> Recorder (WithPriority Log)
-> RuleBody k v
-> Rules ()

14

hiedb and persistent state

We want restarts of the editor/language server to be fast, and we don’t want to recompute
everything

• GHC build artifacts are cached in ~/.cache/ghcide
• We heavily rely on GHC’s recompilation avoidance
• For information that is not persistent in GHC’s persistent state (interface files), we use a

SQLite database called hiedb
• hiedb has tables for references, definitions, exports and more
• We ensure it is up to date, but this is done asynchronously
• Most of the information is generated by indexing .hie files, but some is also manually

computed by ghcide and inserted into a table.

15

GHC version support and CPP

• To use HLS it must be compiled with the exact same version of GHC that your project is
using

• We support a lot of different GHC versions (current 8.10 onwards)
• This requires a lot of CPP to ensure compatibilty
• We try to maintain a compatibilty layer in the Development.IDE.GHC.Compat(.*)

modules
• Most CPP should be restricted to these modules
• However, when there are major logic changes in between versions, it is better to have the

CPP inline where it is being used

16

GHC Exactprint

• We use ghc-exactprint for providing refactorings and edits for various interactions and
requests

• It uses annotations in the AST to provide faithful pretty printing support
• Earlier versions of ghc-exactprint (prior to GHC 9.2) used out of tree annotation, so we use

copious amounts of CPP to support those

17

https://hackage.haskell.org/package/ghc-exactprint

Darks Arts of the GHC API

GHC provides mechanisms to hook into various parts of the compiler, in the form of Plugins
and Hooks.

Various parts of HLS use these to access and replace parts of the compiler normally not
accessible to API users.

data Hooks = Hooks
{ ...
, hscCompileCoreExprHook :: !(Maybe (HscEnv -> SrcSpan -> CoreExpr

-> IO (ForeignHValue, [Linkable], PkgsLoaded)))
, runMetaHook :: !(Maybe (MetaHook TcM))
...
}

data Plugins = Plugins
{ staticPlugins :: ![StaticPlugin]
...
}

18

Type information on hover for splices

$(deriveJSON 'Foo)
==>
instance ToJSON Foo where ...

• The typechecked AST we get back from GHC after typechecking has all splices expanded
out

• We would still like to provide types/documentation on hover, go to definition support and
other features for symbols used in the splice pre-expansion

• We can install a runMetaHook to capture the AST of the splice prior to expansion and
inject it into the AST so that these features work

• We store the AST in an IORef that we read out after typechecking returns

19

Lazy on-demand generation of bytecode

• Usually we don’t want to desugar/compile code, we only want to run the compiler frontend
• But when Template Haskell is used, we must desugar code for all dependencies/imports so

that we can evaluate splices
• However, most dependencies/imports are usually not used in a splice!
• We still have to desugar all dependencies as we don’t want to keep the AST around for all

of them as this uses a lot of memory, and we don’t want to retypecheck them if it turns out
we actually need to compile them

• But we can avoid some wasted work by only compiling the desugared code to bytecode for
dependencies that are actually used in a splice

• To do this, we hook into hscCompileCoreExprHook to intercept splices just before they
are compiled to bytecode and executed.

• We analyse the expression to compute all things it depends on, and requst the build system
to compile only those modules to bytecode

• This results in a nice performance improvement for projects with a lot of TH.

20

Adding custom sytax using plugins (Wingman)

Sometimes, LSP is not expressive enought for the kinds of interactions we would like to support.

For instance, the Wingman plugin provides tacting metaprogramming using special syntax added
using a GHC plugin.

21

Links

• LSP specification
• Blog post on recompilation aviodance for TH

22

https://microsoft.github.io/language-server-protocol/specifications/lsp/3.17/specification
https://well-typed.com/blog/2022/04/hls-performance/

